发布时间:2024-11-05 12:24:33 来源: sp20241105
记者从清华大学获悉,该校物理系尤力教授团队与北京量子信息科学研究院等国内外研究机构合作,首次在强相互作用的室温里德堡气体中,观测到了持续稳定的“时间晶体”信号。相关研究成果日前发表在《自然·物理》杂志上。
2012年,诺贝尔物理学奖得主弗朗克·维尔切克首次预言了“时间晶体”的存在,即处于“时间晶体”相的物理系统会随着时间不断地自我重复,呈现持续的周期性振荡行为。自此,关于“时间晶体”的讨论一直是量子多体物理的热点问题。然而,众多的理论分析指出,由于量子涨落,连续“时间晶体”相很难稳定地存在于处于平衡态的系统中。
据研究团队成员介绍,不同于传统的有限温体系,其研究所构建的系统是一种非平衡态系统,其中里德堡原子间的长程相互作用,相干的外场驱动,以及原子的自发辐射等耗散之间的协同作用,是“时间晶体”得以稳定存在的关键。这种特殊的“时间晶体”也被称为“耗散时间晶体”。
在此基础上,研究团队成员发现,在经过一个短暂的弛豫过程后,系统才在时间维度上建立起真正的长程序,形成稳定的时间晶格结构。研究团队还同时发现,观测到的振荡信号对外界噪声具有很好的抗干扰性,即使人为地添加很强的噪声,“时间晶体”相也不会完全被破坏。研究团队进一步揭示了该系统中形成“时间晶体”的另一关键机制:多种里德堡组分之间的相互竞争,并进行了实验验证。
团队成员表示,这一发现为深化理解“时间晶体”现象提供了一个强大的实验平台。让人们可以通过具体的物理系统来探究有关“时间晶体”的各种理论预言。正如水的三相点——气、液、固态的相变临界点可以被用于摄氏度零度的标定,“时间晶体”在临界点附近剧烈的物态变化,也为量子传感、量子精密测量等新兴技术领域提供了全新的思路。(记者邓晖)
(责编:李昉、李依环)